Sample Final Exam	
ECON 441: Introduction to Mathematical Economics	Instructor: Div Bhagia

Print Name: \qquad

This is a closed-book test. You may not use a phone or a computer.

Time allotted: 110 minutes
Total points: 40

Please show sufficient work so that the instructor can follow your work.

I understand and will uphold the ideals of academic honesty as stated in the honor code.

Signature:

1. (6 pts) Answer the following questions. (1 pt each)
(a) What is the inverse of the function $f(x)=4 x+6$?
(b) Find the intersection of the following sets:

$$
A=\{x: x>0\} \quad B=\{x: x \text { is an even number }\}
$$

(c) The inverse of a 4×4 matrix A exists if
\square The determinant of A is 0
\square The determinant of A is not 0

- Rank of A is 4
- Rank of A is 0
- All rows of A are linearly independent

Select all that apply.
(d) Is the function $y=|x-1|$ differentiable at $x=1$?

- Yes.
\square No.
- Can't say.
(e) The function $f(K, L)=K^{\alpha} L^{1-\alpha}$ is:
- Homogeneous of degree 0
- Homogeneous of degree 1
- Not homogeneous
\square Homogeneous but cannot say of what degree
(f) The following function is:

- Quasiconcave
- Strictly quasiconcave

■ Quasiconvex
\square None of the above
2. (5 pts) Consider a single-variable function:

$$
y=f(x)
$$

In class, we learnt that at any local maximum or minimum, we must have that,

$$
f^{\prime}\left(x^{*}\right)=0
$$

In addition, a sufficient condition for a critical point x^{*} to be a local maximizer is:

$$
f^{\prime \prime}\left(x^{*}\right)<0
$$

(a) (2 pts) Why can't we have a maximum or minimum at a point where $f^{\prime}(x)>0$ or $f^{\prime}(x)<0$?
(b) (2 pts) Why is $f^{\prime \prime}(x)<0$ a sufficient condition for a critical point to be a maximizer?
(c) (1 pt) If f is a strictly concave function, can we have two critical points, i.e., two distinct values of x such that $f^{\prime}\left(x_{1}\right)=f^{\prime}\left(x_{2}\right)=0$?
3. (5 pts) Prove the following statements:
(a) $(2 \mathrm{pts}) \sum_{i=1}^{2} 3\left(x_{i}+1\right)=3\left(\sum_{i=1}^{2} x_{i}\right)+6$
(b) (3 pts) Given the following production function:

$$
Q=f(K, L)=A K^{\alpha} L^{\beta}
$$

The partial elasticity of output with respect to capital K and labor L is α and β, respectively.
4. (8 pts) Consider the following system of equations:

$$
\begin{aligned}
& x_{1}+2 x_{2}=6 \\
& 3 x_{1}+x_{2}=3
\end{aligned}
$$

(a) (2 pts) Write this system of equations in matrix format i.e.,

$$
A v=b
$$

What is A, v, and b equal to?
(b) (2 pts) Calculate the inverse of A.
(c) (2 pts) If you premultiply A^{-1} on both sides of the equation $A v=b$, you should be able to derive an expression to solve for v. Write down this expression.
(d) (2 pts) Using the expression in (c) solve for v^{*}.
5. (16 pts) You are given the following inter-temporal utility function:

$$
U=U\left(c_{1}, c_{2}\right)=\ln c_{1}+\beta \ln c_{2}
$$

where c_{1} and c_{2} is consumption in period 1 and 2 , respectively. $0<\beta<1$ is the rate at which you discount the future and it measures your impatient. You earn income $y_{1}>0$ in period 1 and income $y_{2}>0$ in period 2 . Any of the income you save s in period 1 earns interest $r>0$. So,

$$
c_{1}+s=y_{1}, \quad c_{2}=y_{2}+(1+r) s
$$

Combining these constraints (plugging $s=y_{1}-c_{1}$ in the expression for c_{2}):

$$
c_{1}+\frac{1}{1+r} c_{2}=y_{1}+\frac{1}{1+r} y_{2}
$$

Let the present-discounted income be denoted by m, such that:

$$
m=y_{1}+\frac{1}{1+r} y_{2}
$$

You want to choose c_{1} and c_{2} to maximize utility

$$
U=U\left(c_{1}, c_{2}\right)=\ln c_{1}+\beta \ln c_{2}
$$

subject to the constraint:

$$
c_{1}+\frac{1}{1+r} c_{2}=m
$$

(a) (2 pts) Write down the Lagrangian function corresponding to the above maximization problem.
(b) (3 pts) Write down the first-order conditions for a critical point.
(c) (3 pts) Using the first order conditions in (b), show that the optimal consumption c_{1}^{*} and c_{2}^{*} and the Lagrange multiplier λ^{*} are given by:

$$
c_{1}^{*}=\frac{m}{1+\beta}, \quad c_{2}^{*}=\frac{\beta m(1+r)}{1+\beta}, \quad \lambda^{*}=\frac{1+\beta}{m}
$$

(d) (1 pt) Here, $U\left(c_{1}, c_{2}\right)$ is a strictly quasiconcave function. Is this sufficient to conclude that the c_{1}^{*} and c_{2}^{*} we found in (c) characterize a global maximum?
(e) (2 pts) How does the optimal consumption in period 1 and 2 change due to an increase in m ? Calculate $\partial c_{1}^{*} / \partial m$ and $\partial c_{2}^{*} / \partial m$ to answer your question.
(f) (1 pt) If $r=0$, using your expressions for $\partial c_{1}^{*} / \partial m$ and $\partial c_{2}^{*} / \partial m$, answer whether optimal consumption in period 1 changes by more or less than consumption in period 2 in response to a change in m ?
(g) (2 pts) How does optimal consumption in period 1 change due to an increase in the interest rate r ?

Note that here,

$$
m=y_{1}+\frac{y_{2}}{1+r}
$$

So to calculate $\partial c_{1}^{*} / \partial r$, you need to use the chain-rule as follows:

$$
\frac{\partial c_{1}^{*}}{\partial r}=\frac{\partial c_{1}^{*}}{\partial m} \cdot \frac{\partial m}{\partial r}
$$

(h) (2 pts) By how much does the maximum utility $U\left(c_{1}^{*}, c_{2}^{*}\right)$ change due to an increase in m ? (Hint: What does λ^{*} tell us?)

