Sample Final Exam Solutions

ECON 441: Introduction to Mathematical Economics
Instructor: Div Bhagia

Print Name: \qquad

This is a closed-book test. You may not use a phone or a computer.

Time allotted: 110 minutes
Total points: 40

Please show sufficient work so that the instructor can follow your work.

I understand and will uphold the ideals of academic honesty as stated in the honor code.

Signature:

1. (5 pts) Answer the following questions. (1 pt each)
(a) What is the inverse of the function $f(x)=4 x+6$?

$$
f^{-1}(x)=g(x)=\frac{x-6}{4}
$$

(b) Find the intersection of the following sets:

$$
\begin{gathered}
A=\{x: x>0\} \quad B=\{x: x \text { is an even number }\} \\
A \cap B=\{2,4,6, \ldots\}
\end{gathered}
$$

(c) The inverse of a 4×4 matrix A exists if
\square The determinant of A is 0
\square The determinant of A is not 0
\square Rank of A is 4

- Rank of A is 0
\square All rows of A are linearly independent
Select all that apply.
(d) Is the function $y=|x-1|$ differentiable at $x=1$?
- Yes.
\square No.
- Can't say.
(e) The function $f(K, L)=K^{\alpha} L^{1-\alpha}$ is:
\square Homogeneous of degree 0
\square Homogeneous of degree 1
- Not homogeneous
\square Homogeneous but cannot say of what degree
(f) The following function is:

\square Quasiconcave

- Strictly quasiconcave

Quasiconvex
\boxtimes None of the above
2. (5 pts) Consider a single-variable function:

$$
y=f(x)
$$

In class, we learnt that at any local maximum or minimum, we must have that,

$$
f^{\prime}\left(x^{*}\right)=0
$$

In addition, a sufficient condition for a critical point x^{*} to be a local maximizer is:

$$
f^{\prime \prime}\left(x^{*}\right)<0
$$

(a) (2 pts) Why can't we have a maximum or minimum at a point where $f^{\prime}(x)>0$ or $f^{\prime}(x)<0$?

A point where $f^{\prime}(x)>0$ or $f^{\prime}(x)<0$ cannot be a local maximum or minimum because the value of the function will change in the neighborhood of
such a point. For example, if $f^{\prime}\left(x^{*}\right)>0$, then increasing x slightly above x^{*} will lead to an increase in the value of the function, so x^{*} cannot be a local maximum. Similarly, decreasing x slightly below x^{*} will lead to a decline in the value of the function, so x^{*} cannot be a local minimum as well.
(b) (2 pts) Why is $f^{\prime \prime}(x)<0$ a sufficient condition for a critical point to be a maximizer?

If x^{*} is a critical point, that is $f^{\prime}\left(x^{*}\right)=0$, and $f^{\prime \prime}\left(x^{*}\right)<0$, we can conclude that x^{*} is a local maximizer. This is because $f^{\prime \prime}\left(x^{*}\right)<0$ implies that $f^{\prime}(x)$ is decreasing around x^{*}, and since $f^{\prime}\left(x^{*}\right)=0$, the sign of $f^{\prime}(x)$ flips from positive to negative as we move from left to right of x^{*}. Since $f^{\prime}(x)>0$ indicates that $f(x)$ is increasing and $f^{\prime}(x)<0$ indicates that $f(x)$ is decreasing, it follows that $f(x)$ is increasing as we approach x^{*} and decreasing as we move away from it. Therefore, x^{*} corresponds to a peak in the function.
(c) (1 pt) If f is a strictly concave function, can we have two critical points, i.e., two distinct values of x such that $f^{\prime}\left(x_{1}\right)=f^{\prime}\left(x_{2}\right)=0$?

No, if f is a strictly concave function, it cannot have two distinct critical points. This is due to the fact that $f^{\prime \prime}(x)<0$ for all x in the domain of f, implying that $f^{\prime}(x)$ is strictly decreasing. As a result, $f^{\prime}(x)$ can only be zero at one point.
3. (5 pts) Prove the following statements:
(a) (2 pts) $\sum_{i=1}^{2} 3\left(x_{i}+1\right)=3 \sum_{i=1}^{2} x_{i}+6$

$$
\begin{aligned}
\sum_{i=1}^{2} 3\left(x_{i}+1\right) & =3\left(x_{1}+1\right)+3\left(x_{2}+1\right) \\
& =3 x_{1}+3+3 x_{2}+3 \\
& =3\left(x_{1}+x_{2}\right)+6 \\
& =3 \sum_{i=1}^{2} x_{i}+6
\end{aligned}
$$

(b) (3 pts) Given the following production function:

$$
Q=f(K, L)=A K^{\alpha} L^{\beta}
$$

The partial elasticity of output with respect to capital K and labor L is α and β, respectively.

Elasticity of output w.r.t. capital:

$$
\varepsilon_{Q K}=\frac{\partial Q}{\partial K} \cdot \frac{K}{Q}=\alpha A K^{\alpha-1} L^{\beta} \cdot \frac{K}{A K^{\alpha} L^{\beta}}=\alpha
$$

Elasticity of output w.r.t. labor:

$$
\varepsilon_{Q L}=\frac{\partial Q}{\partial L} \cdot \frac{L}{Q}=\beta A K^{\alpha} L^{\beta-1} \cdot \frac{L}{A K^{\alpha} L^{\beta}}=\beta
$$

4. (6 pts) Consider the following system of equations:

$$
\begin{aligned}
& x_{1}+2 x_{2}=6 \\
& 3 x_{1}+x_{2}=3
\end{aligned}
$$

(a) (1 pt) Write this system of equations in matrix format i.e.,

$$
A v=b
$$

What is A, v, and b equal to?

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right] \quad v=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad b=\left[\begin{array}{l}
6 \\
3
\end{array}\right]
$$

(b) (2 pts) Calculate the inverse of A.

$$
A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]=-\frac{1}{5}\left[\begin{array}{cc}
1 & -2 \\
-3 & 1
\end{array}\right]
$$

(c) (1 pts) If you premultiply A^{-1} on both sides of the equation $A v=b$, you should be able to derive an expression to solve for v. Write down this expression.

Premultiplying by A^{-1} :

$$
A^{-1} A v=A^{-1} b
$$

Since $A^{-1} A=I$, we have $v^{*}=A^{-1} b$.
(d) (2 pts) Using the expression in (c) solve for v^{*}.

$$
v^{*}=-\frac{1}{5}\left[\begin{array}{cc}
1 & -2 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
6 \\
3
\end{array}\right]=-\frac{1}{5}\left[\begin{array}{c}
0 \\
-18+3
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

5. (14 pts) You are given the following inter-temporal utility function:

$$
\begin{equation*}
U=U\left(c_{1}, c_{2}\right)=\ln c_{1}+\beta \ln c_{2} \tag{1}
\end{equation*}
$$

where c_{1} and c_{2} is consumption in period 1 and 2 , respectively. $0<\beta<1$ is the rate at which you discount the future and it measures your impatient. You earn income $y_{1}>0$ in period 1 and income $y_{2}>0$ in period 2 . Any of the income you save s in period 1 earns interest $r>0$. So,

$$
c_{1}+s=y_{1}, \quad c_{2}=y_{2}+(1+r) s
$$

Combining these constraints:

$$
c_{1}+\frac{1}{1+r} c_{2}=y_{1}+\frac{1}{1+r} y_{2}
$$

Let the present-discounted income be denoted by m, such that:

$$
m=y_{1}+\frac{1}{1+r} y_{2}
$$

You want to choose c_{1} and c_{2} to maximize utility $U\left(c_{1}, c_{2}\right)$ in equation (1) subject to the constraint:

$$
\begin{equation*}
c_{1}+\frac{1}{1+r} c_{2}=m \tag{2}
\end{equation*}
$$

(a) (2 pts) Write down the Lagrangian function corresponding to this maximization problem.

$$
L\left(c_{1}, c_{2}, \lambda\right)=\ln c_{1}+\beta \ln c_{2}+\lambda\left(m-c_{1}-\frac{1}{1+r} c_{2}\right)
$$

(b) (3 pts) Write down the first-order conditions for a critical point.

$$
\begin{align*}
\frac{\partial L}{\partial c_{1}} & =\frac{1}{c_{1}^{*}}-\lambda^{*}=0 \tag{3}\\
\frac{\partial L}{\partial c_{2}} & =\frac{\beta}{c_{2}^{*}}-\frac{\lambda^{*}}{1+r}=0 \tag{4}\\
\frac{\partial L}{\partial \lambda} & =m-c_{1}^{*}-\frac{1}{1+r} c_{2}^{*}=0 \tag{5}
\end{align*}
$$

(c) (2 pts) Using the first order conditions in (b), show that the optimal consumption c_{1}^{*} and c_{2}^{*} and the Lagrange multiplier λ^{*} are given by:

$$
c_{1}^{*}=\frac{m}{1+\beta}, \quad c_{2}^{*}=\frac{\beta m(1+r)}{1+\beta}, \quad \lambda^{*}=\frac{1+\beta}{m}
$$

Note that from (3), $\lambda^{*}=1 / c_{1}^{*}$, plugging this in (4), we get:

$$
c_{2}^{*}=\beta(1+r) c_{1}^{*}
$$

Plugging this expression for c_{2}^{*} in (5):

$$
c_{1}^{*}+\frac{1}{1+r} \beta(1+r) c_{1}^{*}=m \rightarrow c_{1}^{*}=\frac{m}{1+\beta}
$$

In which case,

$$
c_{2}^{*}=\beta(1+r) c_{1}^{*}=\frac{\beta m(1+r)}{1+\beta}
$$

Finally, since $\lambda^{*}=1 / c_{1}^{*}$,

$$
\lambda^{*}=\frac{1}{c_{1}^{*}}=\frac{1+\beta}{m}
$$

(d) (1 pt) Here, $U\left(c_{1}, c_{2}\right)$ is a strictly quasiconcave function. Is this sufficient to conclude that the c_{1}^{*} and c_{2}^{*} we found in (c) characterize a global maximum? Answer: Yes
(e) (2 pts) How does the optimal consumption in period 1 and 2 change due to an increase in m ? Calculate $\partial c_{1}^{*} / \partial m$ and $\partial c_{2}^{*} / \partial m$ to answer your question.

$$
\frac{\partial c_{1}^{*}}{\partial m}=\frac{1}{1+\beta}>0, \quad \frac{\partial c_{2}^{*}}{\partial m}=\frac{\beta(1+r)}{1+\beta}>0
$$

Since $\beta>0, r>0$, both $\partial c_{1}^{*} / \partial m$ and $\partial c_{2}^{*} / \partial m$ are positive and hence optimal consumption increases in both periods due to an increase in m. In particular, c_{1}^{*} increases by $1 /(1+\beta)$ for a one unit increase in m. While, c_{2}^{*} increases by $\beta(1+r) /(1+\beta)$ for a one unit increase in m.
(f) (1 pt) If $r=0$, using your expressions for $\partial c_{1}^{*} / \partial m$ and $\partial c_{2}^{*} / \partial m$, answer whether optimal consumption in period 1 increases by more or less than consumption in period 2 in response to a change in m ? When $r=0$,

$$
\frac{\partial c_{1}^{*}}{\partial m}=\frac{1}{1+\beta}>\frac{\beta}{1+\beta}=\frac{\partial c_{2}^{*}}{\partial m}
$$

Since $\beta<1$ (consumption in the future is discounted), when the interest rate $r=0$, optimal consumption in period 2 increases by less relative to period 1 due to a one unit increase in m.
(g) (2 pts) How does optimal consumption in period 1 change due to an increase in the interest rate r ?

Note that here,

$$
m=y_{1}+\frac{y_{2}}{1+r}
$$

So to calculate $\partial c_{1}^{*} / \partial r$, you need to use the chain-rule as follows:

$$
\frac{\partial c_{1}^{*}}{\partial r}=\frac{\partial c_{1}^{*}}{\partial m} \cdot \frac{\partial m}{\partial r}=\frac{1}{1+\beta} \cdot \frac{-y_{2}}{(1+r)^{2}}<0
$$

So optimal consumption in period 1 decreases due to an increase in interest rate r.

